производная ~ - significado y definición. Qué es производная ~
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es производная ~ - definición

Производная (обобщение); Односторонняя производная; Производная (обобщения); Производные высших порядков; Правосторонняя производная; Левосторонняя производная
  • Касательное отображение <math>d\varphi \colon \, TM \to TN</math>

Производная Лагранжа         
Производная Лагранжа, также известная как субстанциональная производная или материальная производная, — это производная, взятая в зависимости от системы координат, движущейся со скоростью u и часто используемая в гидроаэромеханике и классической механике. Она определена как от скалярной функции \phi(\vec{r},t) координат и времени, так и от векторной \vec{v}(\vec{r},t):
Слабая производная         
«Слабая производная» (в математике) — обобщение понятия производной функции («сильная производная») для функций, интегрируемых по Лебегу (то есть из пространства L_1), но не являющихся дифференцируемыми.
Полная производная         

производная по t от функции у = F (t, x1,..., xn), зависящей от t и x1,..., xn. П. п. выражается формулой

.

Wikipedia

Производная (математика)

Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.

Общее между различными вариациями и обобщениями заключается в том, что производная отображения характеризует степень изменения образа отображения при (бесконечно) малом изменении аргумента. В зависимости от рассматриваемых математических структур конкретизируется содержание данного понятия.

Только для случая топологических линейных пространств известно около 20 обобщений понятия производной.

Ejemplos de uso de производная ~
1. Производная революция Ситуация меняется, и очень быстро.
2. Он достаточно круто идет вверх, производная хорошая.
3. Под потолком трубы - "дцатая" производная Центра Помпиду.
4. Отсюда, как производная, путаница с клубными соревнованиями.
5. Мужская мода - производная от обстоятельств внешнего свойства.
¿Qué es Производная Лагранжа? - significado y definición